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ABSTRACT

In this paper we investigate the growth rates of Ggrtler vortices in a compressible flow

in the inviscid limit of large G5rtler number. Numerical solutions are obtained for 0(1)

wavenumbers. The further limits of (i) large Math number and (ii) large wavenumber with

0(1) Mach number are considered. We show that two different types of disturbance modes can

appear in this problem. The first is a wall layer mode, so named as it has its eigenfunctions

trapped in a thin layer near the wall. The other mode we investigate is confined to a thin

layer away from the wall and termed a trapped layer mode for large wavenumbers and an

adjustment layer mode for large Mach numbers, since then this mode has its eigenfunctions

concentrated in the temperature adjustment layer. We are able to investigate the near

crossing of the modes which occurs in each of the limits mentioned.

1This research was supported by the National Aeronautics and Space Administration under NASA Con-
tract No. NAS1-18605 while the authors were in residence at the Institute for Computer Applications in
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665.





1. Introduction

Our aim in this paper is to investigate the growth rates of G6rtler vortices for a com-

pressible inviscid flow over an infinite cylinder in the limits of high Mach number and high

wavenumber. This investigation is motivated by recent interest in the development of hyper-

sonic aircraft which might well be capable of reaching speeds in the order of 20 - 25 Mach.

Real gas effects will certainly come into play at these speeds but for simplicity's sake we have

not taken them into account in this paper. We have also assumed that Chapman's viscosity

law holds for this fluid.

The most obvious difference between GSrtler vortices in incompressible and hypersonic

flows is that the presence of a temperature adjustment layer, where the temperature decays

rapidly to its free stream value, at the edge of the boundary layer enables hypersonic G6rtler

vortices to be concentrated well away from the wall. In the incompressible case, we know,

from the work of Hall (1982a,b, 1983), and Denier, Hall, and Seddougui (1991), that unstable

GSrtler vortices are not localized within the boundary layer for order one GSrtler numbers.

For higher GSrtler numbers the most dangerous G6rtler vortices have wavelengths small

compared to the boundary layer thickness and are trapped near the wall. Not surprisingly

this situation does not change significantly for order one Mach numbers and this nonparallel

problem has been discussed by Wadey (1990) and Spall and Malik (1989). In the latter

two papers, the nonparallel equations were solved numerically following the approach of Hall

(1983) and the main result obtained was that the growth rate of a G6rtler vortex is a function

of its upstream history. The numerical calculations of Wadey (1990) do suggest that as the

Mach number increases the unstable G6rtler vortices locate themselves towards the edge of

the boundary layer. This view is supported by Hall and Fu (1989) whose main result was that

the logarithmically small temperature adjustment layer at the edge of a hypersonic boundary

layer can support GSrtler vortices and the most dangerous wavelengths of the vortices are

comparable with the thickness of this layer. Fu, Hall, and Blackaby (1990) have considered

the influence of real gas effects and Sutherland's viscosity law on the G6rtler instability in

hypersonic flows.

This present paper is restricted to linear regimes of vortex growth, for a detailed account

of nonlinear regimes the reader is referred to the review article by Hall (1990). It is also

worth noting that hypersonic boundary layers are susceptible to instabilities other than

those caused by streamline curvature, such as Tollmien-Schlichting wave instabilities which

have been discussed by Cowley and ttall (1990) and Smith and Brown (1990). Clearly any

nonlinear investigation of G6rtler vortices at hypersonic speeds must allow for the possible

interaction of the vortices and these other types of instabilities.

The present paper is concerned with the inviscid limit of GSrtler vortices in a compressible



boundary layer. We find that two distinct modesexist and we are able to describethem

in the separatelimits of large free-streamMach numberand large disturbancewavenumber

(although for the caseof large free-streamMach number the disturbancewavenumberwill

also be large). The first mode alsoexists in an incompressibleboundary layer and is termed

a wall layer mode here sinceits eigenfunctionsare concentratedin a thin layer near to the

wall. For the incompressiblecase,in the limit of largewavenumber,this modeis describedby

Denier, Hall, and Seddougui(1991). The secondmodehasits eigenfunctionsconcentratedin
a thin layer awayfrom the wall andthereforeisreferredto asatrapped layermodein the large

wavenumberlimit. In the hypersoniclimit this layer is preciselythe temperatureadjustment

layer, a logarithmic layerwherethe basictemperaturechangesrapidly from its O(M_) value

close to the wall to its 0(1) value at the edge of the boundary layer. Consequently, in the

hypersonic limit this mode is termed an adjustment layer mode.

The numerical solution of the equations governing the stability of GSrtler vortices in the

inviscid limit, discussed in Section 2, show that the growth rates of the infinity of solutions

of the two modes described above, as functions of the disturbance wavenumber, appear

to intersect. A similar near-crossing of modes is evident in the numerical results of Mack

(1987) in the form of kinks in the neutral curves of the generalized inflection point modes

for compressible flow over a flat plate. Asymptotic solutions for the infinity of solutions of

the compressible Rayleigh equation, termed acoustic modes, in the hypersonic limit have

been given by Cowley and Hall (1990), while the so-called, single, vorticity mode for large

values of the Mach number has been discussed by Smith and Brown (1990). Cowley and

Hall (1990) postulated that the near-crossing of the neutral curves could be described by

a WKB description of the acoustic modes and the vorticity mode. This is precisely the

method employed by Smith and Brown (1990) in their investigation of inviscid modes of

instability for large Mach number flows. The results of Smith and Brown (1990) show that

the discontinuous vorticity mode becomes continuous in the limit of large Mach number.

Additionally, they ascertain that for large Mach numbers the acoustic and vorticity modes

are separated by an exponentially small amount as was proposed by Cowley and Hall (1990).

The objective of the present paper is to describe the wall layer modes and trapped layer

modes present for inviscid G6rtler vortices and to investigate their near-crossing which exists

as outlined above. To this aim we follow the ideas of Cowley and Hall (1990) and Smith and

Brown (1990) and consider a WKB analysis of the modes of interest.

The layout of this paper is as follows. In Section 2 we derive the equation governing the

structure of inviscid GSrtler vortices in a compressible boundary layer and then discuss some

numerical results of this equation. In Section 3 we take a closer look at the wall layer modes,

those with their eigenfunctions trapped near the wall, in the hypersonic limit. We follow



this by looking at the adjustment layer modes, those whose eigenfunctions are concentrated

in the temperature adjustment layer, in the hypersonic limit in Section 4. Then in Section

5 we look at the wall layer modes for the high wavenumber limit. In Section 6 we consider

the trapped layer modes for the high wavenumber limit, these are the equivalent of the

adjustment layer modes for the hypersonic limit. We then consider the near crossing of the

different types of modes for both limits in Section 7 before finally summarizing our results

in Section 8.

2. Formulation

Our aim in this section is to obtain the equation which determines the structure of a

GSrtler vortex in a compressible boundary layer. The boundary layer considered is that of

a flow over the cylinder Y* = 0,-o¢ < z* < cxz so that the z*-axis is a generator of the

cylinder and Y" measures the distance normal to the surface. The x*-coordinate measures

distance along the curved surface, which is supposed to have variable curvature (1/m)x(x'/l)

where m and l are length scales. The Reynolds number R, GSrtler number G and curvature

parameter 5* are defined by
U_l

R - , (2.1a)
/2

1 (2.1b)G = 2R_5",

l
5" = --, (2.1c)

rn

where Uo_ is a typical flow velocity in the streamwise direction and u is the kinematic viscosity

of the fluid. The Reynolds number is assumed to be large, whilst 5" is sufficiently small so

that as 5" ---* 0 the parameter G is fixed and of order one. We take the basic two-dimensional

boundary layer to be of the form

u_= U_[_(X,Y),R-_V(X,Y),O][1 + O(R-_)], (2.2)

where

X*

X= -[-, y_ y'R½l

We chose to look at a Blasius boundary layer by putting _ = if(r/) where f satisfies

(2.3)

2f'" + f f"= O, f(O)-= f'(O)= O, f'(oo)= 1, (2.4)

and r/is given by

_=Y'/X½, (2.5)



where Y* is the Howarth-Dorodnitsyn variable

fflY* = _dY, (2.6)

and we have taken a model fluid (i.e., the Prandtl number equal to one and Chapman's vis-

cosity law with C equal to one). For the case of a thermally insulating wall, the temperature

is given by

+ 2( 7 - 1)M_(1 - f'2), (2.7)
T= 1

where M_ is the Mach number of the free stream and 7 is the ratio of the specific heats and

will be taken to be 1.4 when it is needed numerically. Defining Z by

we perturb (2.2) by writing

, 1z R_

z- z' (2.8)

u = U,_[_ + 5(](X,Y)E,, _R-_ + 5R-½V(X,Y)E1, 6R-½_V(X,Y)E1][1 + O(R-½)], (2.9)

where E1 = exp(iaZ) and 5 << 1 (see Hall (1982a) for further discussion of the above

scalings). We similarly perturb the basic pressure, p, by putting

and the basic temperature by

p -- _ + (_R -1P(x, Y)E1,

= T_o(T + _T(X,Y)E,),

where T_ is the free stream temperature.

scalings

where

(2.10)

(2.11)

If we then introduce a growth rate /3 and the

_I(X,Y) = U(Y)E2,

?(X, Y) = G½V(Y)E2,

I)V(X, Y) = G½ W(Y)E2,

_h(X, Y) = T(Y)E2,

/'(X, Y) = GP(Y)E2,

(2.12a)

(2.12b)

(2.a2 )

(2.12d)

(2.12e)

E2 = exp {/G½fl(X)dX}, (2.12f)

and insert (2.9) - (2.11) into the governing equations and take the inviscid limit G -+ oc we

get

_flU 0 (______) iaPw _p_TT + 0-Y + T T2 - 0, (2.13a)



+ : 0,

[g_V + KgU] 1 _ g2IgT OP
T 2 -_2 OY'

P_ufi W = -iaP,
T

OT

+ v--gp = o,
where K is a measure of the curvature. Taking p = 1 we find from (2.13) that

VL2_OY T OY \TOYJ] +/3_-O-Y \TOY] =0.

If we now change variables to 77, take for simplicity's sake a value of X = 1 and put

K_/3,

(2.13b)

(2.13c)

(2.13d)

(2.13e)

(2.14)

(2.15)

V" + V' -_-] + V [ (-a2T 2--

with the boundary conditions

in order to eliminate K from the equation we get after some rearranging

f, +Tf- r + !ry =0, (2.16)

V(O) = O, (2.17a)

V _ e-a_ as 7/ _ oc, (2.17b)

V'_" -de -a_ as r/_ co. (2.17c)

Since (2.16) corresponds to an inviscid limit we cannot satisfy the viscous boundary condition

V' = 0 at 77 = 0. Equation (2.16) is the compressible generalization of equation (5.8) in

Denier, Hall, and Seddougui (1991). Similarly to Denier, Hall, and Seddougui (1991) it can

be seen that (2.16) and (2.17) have the exact solution

V =f'e -_', /72 =-a (2.18)
2'

which is valid for all a and M_. tIowever, in order to get other solutions it is necessary to

solve this eigenvalue problem numerically.

We solved (2.16) and (2.17) for a variety of Mach numbers. Figure 1 shows the first

eleven modes for a Math number of 2. These modes are not markedly different in shape

from those of the form/3: = constant x a obtained in the incompressible case (again, see

Denier, Hall, and Seddougui (1991)). Figure 2 shows solutions for a Mach number of 3.25

and we can see that there are now significant differences compared with the incompressible

5



case. However, all of the modes continue to rise as a _ cx_ and are of the wall layer type,

so-called because the eigenfunction is concentrated in a layer near the wall. In Figure 3

where the Math number is now 5, we can clearly see the appearance of two adjustment layer

modes which tend to a constant value of/3 as a _ cx_. We call these modes adjustment

layer modes because their eigenfunctions are concentrated in the temperature adjustment

layer in the hypersonic limit. (They will be referred to as trapped layer modes for 0(1) Mach

numbers.) Each of the modes in this figure (apart from the exact solution) contributes a

portion to the adjustment layer modes as they pass through the relevant positions and in

doing so they change up to the next higher wall layer mode. If we follow the fourth mode

on Figure 3 as a increases we can look at its eigenfunction and see how it changes. Initially

when a = 0.2 we can see in Figure 4a that the eigenfunction is a widened version of the

eigenfunction of the third wall layer mode with an additional lower peak in the temperature

adjustment layer. In Figure 4b with a = 1.1 the mode is now in its flat section and the

eigenfunction is indeed that of an adjustment layer mode. By the time a = 1.25, Figure 4c

shows that the peak in the temperature adjustment layer has split into two. In Figure 4d we

have a = 1.35 and the left-hand peak of these twin peaks is moving into the wall layer whilst

the right-hand peak is decaying, showing the process by which the modes change up to the

next higher wall layer mode. To complete the sequence, Figure 4e shows the eigenfunction

for a = 2.5 and it turns out to be the eigenfunction of the fourth wall layer mode.

Figure 5 shows solutions for a Mach number of 8 and we can see the first three adjustment

layer modes. As the Mach number and wavenumber increase, the modes come very close to

intersecting (although they do not as we shall show in Section 7) and this means we have

to take prohibitively small steps in a in order to follow a particular mode numerically. As a

result, some wall layer type portions of modes have been omitted from Figure 5.

3. The Wall Layer Modes for Moo >> 1

Taking Equation (2.16) and using the scalings

a -- + ..., (3.1)
M_

and
/3

/3_ +..., (3.2)
Moo

6



allows us to look at the wall layer modes for M_ >> 1, for which

[(1L( l_fa)] +V _ g2('7_1 (1- f,

4f'n ) 1 -a2 {f '' fa) )] o.(1 -- f,2) + _('7 - 1)_-7 _-f;(1 - + f'f" =

(3.3)

When g >> 1 we can get an approximation to the wall layer modes by the application of the

WKB method. There are three regions to consider as we have a turning point associated

with the WKB expansion. Close to the wall the transformation

V(r/) = S(71)(1 - f,2), (3.4)

allows us to write (3.3) as

S"(1-f,2)_ 2S(f'f" + f,2 + f,f,,,) + S(1-f,2)[(__g2(7 - 1)2(1_ f,2)2

I' (1 -- f,2) + 7 (7 - 1)_7 77 (1 - ) + f'f'' =

(3.5)

which for g >> 1 gives the WKB approximation

1('7 1) /f"S"+g_S -4( 7 - 1)2(1 -f'2)+ 2 _ [77(1-f'2) /30/
and we write this as

S" + 'a2SH(7],-fl) = O, (3.7)

where

21('7-1)_2 [ f'' fn) )H = -4( 7 - 1)2(1 - f'_)+ /-];-(1 - + f'f"

H > 0 for 0 < 7/< r/t and r/t is the turning point. In order to satisfy the boundary condition

(2.17a) we must have S(0) = 0 since (1- f') -¢ 0 for 7/ = 0. The solution of (3.7) which

satisfies S(0) = 0 is

f[ 1A sin(g (H(rh))_drh), (3.8)
S(r/) = H--}--

where A is a constant and so V is given by

V- A(1-fa) fo, 7H¼ sin(g (H(yl)):drl_). (3.9)

In the region of the turning point, the equation to be solved is the Airy equation

V" - -_2a(71 - 71t)V = O,



where 0- is positive and given by
dH

The required solution of (3.10) which decays exponentially as 7/--_ oc is

(3.11)

1 . ]

V = BTr:A_([-_20-]s(q - r/t)), (3.12)

where B is a constant and Ai denotes the Airy function (see Abramowitz and Stegun (1964)).

If we denote the argument of the Airy function by t then since for t << -1

we have that for t << -1

V ,_ ]_-l_sin Itl_ + • (3.14)

Now letting 7/--* r/t in (3.9) gives

• _0 r)t 1
V = A(ll - f'(r/t)2)l sln(a (H(r/1))Tdr/1). (3.15)

0-i(r/t -- r/)4

Matching amplitudes and phases between (3.14) and (3.15) implies, since we allow B to be

positive or negative in (3.12) and hence phases may be either in phase or 7r radians out of

phase, that

A(1 - f'(r/t)2)g_
_ =+B, (3.16)

06

and
7r

_271" -- --

4 (3.17)
a- j_ '

where
fret ]

J- = J0 (H(r/1))_drh' (3.18)

and n is a large integer.

In Figure 6 we have plotted the wall layer modes, with equation (3.17) for n running

from one through seven and a Mach number of 8, and then superimposed them on Figure 5.

We can see, even for a moderate Mach number and small values of n, that equation (3.17)

gives a good approximation to the wall layer modes.

4. The Adjustment Layer Modes for M_ >> 1

For the adjustment layer modes, the appropriate equation below the turning point is

(3.9). However, (3.12), the solution of the Airy equation (3.10), must now be replaced by

1 1

V= E_r_Ai(t) + FTr_Bi(t), (4.1)



where E and F are constants since V will be large in the temperalure adjustment layer away

from the wall and so we are no longer seeking a solution which decays exponentially beyond

the turning point. Thus for t << -1, since

Bi(t) , 1 a (4.2)

we have

ttl_ sin Itl } + - q_ ,
t i

where tan ¢ = E/F. Matching (3.9) and (4.3) gives

(4.3)

A(1 - f'(7]t)2)-g_
1_

0"6

= +(E 2+ F2)½, (4.4)

and

(4.5)

where n is again a large integer.

When t >> 1 we have
1 o

Ai(t) : 2 7c-_t-i' 1 exp(--_t})'o

and

so (4.1) gives for t >> 1 that

7r-gt-4Bi(t) = exp t_

(4.B)

(4r)

V _ Ft-} exp t_- , (4.8)

and this has to be matched with the solution above the turning point but below the tern-

perature adjustment layer. In this region V is given by

Co(1 - f,2) f,_ 1V
(-n)} exp(g_ (-n(rh))_drl_), (4.9)

where we have only retained the exponentially large term, muMplied by a constant Co, in

the WKB approximation. Matching between (4.8) and (4.9) gives

1

F __
- i(1 - (f'(rh))2). (4.10)

Co 0"6

The temperature adjustment layer has z = 0(1) where

r/= b+F- (log['r+z) , (4.11)

and b is a constant and

F = ¢2 log(M_). (4.12)

9



In this region therefore

whereh is a constant so

he z

f' _ 1 - _-;77;, (4.13)

T ,,_ 1 + (7- 1) hez, (4.14)

and hence

g(3` 1) hezr (4.15)-H _ (3'- 1) 2h2e2z a _

ML ML

Therefore if we take z >> 1 and insert these expansions into (4.9) we get that the behavior

of V as the temperature adjustment layer is entered from below is

2coh½ ½zexp {g J+ -g (3" - 1)he_ "_
V_ e

M_(3' - 1)½ F _/-5_ j, (4.16)

where

J+ = , (3' - 1) (1 -

1

2 M£/32 [-T (1 - fa) + f,f,, d_. (4.17)

In the temperature adjustment layer we make the transformation (4.11) in (2.16) and

after scaling a and/3 by writing

a = hi' +..., (4.18a)

~ 1

/3 =/3F_ +..., (4.18b)

we get, retaining the leading order terms for M¢¢ >> 1, that

From (4.16) we can see that as z ---* _ the behavior of V will be a multiple of

'- (420)S_e _

where

s = (3"- 1)he _. (4.21)

Letting z _ -ec in (4.19) we can easily see that

V -,_ e a_, (4.22)

since we require V to decay above the temperature adjustment layer. Using (4.20) and (4.22)

as boundary conditions we solved (4.19) numerically. In Figure 7 we have plotted the first

three adjustment layer modes given by (4.19) for a Mach number of 8 and superimposed

10



this onto Figure 5. We canseethat (4.19) is giving a goodapproximation to the adjustment

layer modes.
The numericalresultswegainedin Section2 seemedto suggestthe existenceof a critical

Mach number, abovewhich the adjustment layer modes comeinto play and below which

they do not exist, and we shall discussthis further in Section6.

5. The Wall Layer Modes for M_ _ 0(1)

The modes located near the wall for M_ _ 0(1) will be described by Equation (2.16).

For large a we are able to obtain an approximation to them from the WKB solution in a

similar way to the solution obtained in Section 3 in the hypersonic limit.

If we write

+ !
fl_--fla2,

then there is no turning point in the WKB solution.

(5.1)

However, the solution obtained does

breakdown when r/,-, 0(a -1) as a consequence of f' ,-_ at/for r/<< 1. Thus, in this region we

write

d2 = aT_,rl, (5.2)

where T_ is the value of T(r/) at r/ = 0. (When the flow is adiabatic, i.e., the wall is thermally

insulating, from (2.7), T_ = 1 + (7- 1)M_/2.) Substituting (5.1) and (5.2) into (2.16) we

find that V satisfies the following equation:

_13+2 ( d2v
\ V (5.3)---V =-_.

This is the equation satisfied by V in the corresponding incompressible problem described

by Denier, Hall, and Seddougui (1991). It is a form of Whittaker's equation and the solution

for V satisfying the boundary conditions

V=Oat =O,

and

V--+ 0 as ¢ _ oo,

may be given in terms of Kummer functions (see Abramowitz and Stegun 1964). Hence, we

find that the unstable eigenvalues for the present case of a compressible fluid will be the same

as those for the incompressible problem described by Denier. Hall, and Seddougui (1991).

These are
1 1

x/-2fl+ = 1, x/2' x/_' ....

11



Thus from (5.1) the growth rates for the wall layer modes are given by

/__ a (5.4)
-- 2n'

where n = 1,2,3, .... We note that the first solution corresponds to the exact solution

described by (2.18). Moreover, the eigenvalues are independent of M_ and T_.

The appropriate solution of (5.3) is

V(¢) = ble-¢_bM(1 - n,2,2¢), (5.5)

where M(a, b, z) is Kummer's function and bl is a constant. M(1 - n, 2, 2¢) is a polynomial

of degree (n - 1) in 2¢. The behavior of V for large _b is

2n-1

V(_b) ,,_ bl(-1) n-1 n--_e-¢_b n + .... (5.6)

Then from (2.16), we find that the WKB solution in the region above the wall layer which

matches with (5.6) as 7/-+ 0 is given by

V(_) = Cl(-T(rl))(1-'_)/2(f'(rl)) n exp[-a f0 _ T(rh)dr/1], (5.7)

where cl is a constant. Since

O_2 4

f'(r/) _ (_rl - _--_r/ +..., (5.8)

for rI << 1, where c_ = 0.332..., cl is given by

n (3n-1)/2-n 2n-1

c1 = a T_ a (-1) n-1 ?z------_bl. (5.9)

In Figure 8 we show the growth rate given by (5.4) as a function of a for M_ = 5 for

the first nine wall modes. These solutions are superimposed on the corresponding numerical

solutions from Section 2. We see that for large a the asymptotic results are very good

approximations to the numerical solutions.

In order to discuss the near-linking of these wall layer modes and the trapped layer modes

described in the next section, we must consider the solution of the wall layer modes for large

mode number. This is apparent from Figure 3 since the growth rates of the wall layer modes

will not be close to those of the trapped layer modes for a >> 1 unless n is large.

Thus for n >> 1 we write the wavenumber as

a = aon + al + ..., (5.10)

12



where a0 and al are constants. Then from (5.4) the growth rate of the wall layer modes for

large n is given by
1_

a(_ a 1

/3 = _--r + 7 + .... (5.11)
27 8_a_n

From (5.5) the solution for V in the wall layer for large n is

31(11)V(¢)=b12 3,rc 21n _b_cos 8}_b:n_---arr4 " (5.12)

As _b ---+ 0 the solution (5.12) matches onto the solution in a thin layer next to the wall of

thickness 0(n -1) where V satisfies

d2V 2 V

de-7 + T = 0, (5.13)

and ¢ = n¢. To satisfy the boundary condition at the wall and to match with (5.12) as

¢ --+ oo we find that

y ~ <(¢ - +...) for ¢ <<

and

3111( 34)V _ b12-_rc-_n- ¢_ cos 8½¢½ as ¢ + oo,

where el is a constant.

For large values of _b the solution given by (5.12) is valid only for _ < 2n and matches

onto the solution above the wall layer for large n when ga is large and ga < 2n. We find that

the WKB solution in the region above the wall layer which matches with (5.12) as r/---+ 0 is

given by

= °

(5.14)

where gl is a constant and 01 = 3rc/4. The function Q(rl) is defined by

ao \ if(r/)

and the solution (5.14) is valid for 0 < 7/< 7/* where r/* is the first zero of Q and Q < 0 for

r/< r/*. A more thorough discussion of the function Q is given in the next section.

In the region close to 7? = r/*, from (2.16) V satisfies

V"- r(_l- rl*)a_n2V = 0, (5.16)

where r = Q'(r/*) > 0. Since we require V to decay as 7/ -+ oo the appropriate solution of

(5.16) is

V = koTr½Ai(r), (5.17)
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where k0 is a constant and r = (a2on2r)½07 - r/*). From the behavior of the Airy function Ai

given by (3.13) for r --+ -oo we have from (5.17) that

v~ k01rl-' cos (_l_l}-4)' (5.18)

as r --+ -oc. Then matching the amplitudes and phases of (5.14) as r/--+ rt_ with (5.18) gives

and

r-¼(agn2v)_-T(rl*)gt = ko, (5.19a)

2_o 71(nao + al)I1 -- (11 + I2) -- 0a = _',

where the integrals It and I2 are defined by

j_0 _* 1

and

0 rl* 1

The expression (5.19b) determines al, i.e.,

01 + 4 -- naoI1

al = Ia + I2)"

(5.19b)

(5.20a)

(5.20b)

(5.21)

6. The Trapped Layer Mode for Moo _ 0(1)

For Moo _ 0(1) this mode is concentrated away from the wall and is the equivalent of

the temperature adjustment layer made for Moo >> 1 described in Section 4. For a >> 1 this

mode can be regarded as a virtually continuous function of a. In Section 7.2, we discuss the

near-linking of this mode with the wall layer solution for large n. Anticipating this we define

a by (5.10) and consider the solution of the trapped layer mode for n >> 1. To obtain the

solution for large a from the following results we set al = 0 and aon = a. For large n we

write (2.16) in the form
--!

V" - 2Tv ' - agn2QV = O,

where

1 ( f"Q(,j)=T 1- \27,

Then this mode is concentrated in the region where

(6.1)

( f" T' ) ,7=,5 (6.3)= = ,
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and fl is a maximum at r/= _. Therefore, from (6.2) we have

Q(_) = Q'(_) = 0 and Q"(f/) > 0. (6.4)

Thus when a0 = 2f102the function Q defined by (6.2) is also that defined by (5.15).

In Figure 9 we plot Q(rl)/-T 2 from (6.2) for Moo = 5 for a range of values of ft. We choose

to show Q/T 2 rather than Q since (T(r])) _ given by (2.7) is large for small values of r/ and

decays exponentially to the free stream value of 1 as r/increases. We see from Figure 9 that

Q(r/) --+ -co as r/ --* 0+. For certain values of/3 the function Q(r/) has three zeros. For a

particular value of fl the second and third zeros coincide in a turning point. This position of

7] is the location of the trapped layer modes r/= _, for large a. The sequence of modes will

be described by corrections to (6.3).

However, these trapped modes will not exist for values of Moo below a critical value. We

can see this if we look at the plots of Q(V)/T 2 for various values of/3 for Moo = 3 shown in

Figure 10. It is apparent from this figure that Q(r/) only has one zero for any value of/3 and

no local minimum for Moo = 3. For the Chapman constant C = ] and an adiabatic fluid the

critical value of Moo is found to be Moo = Mc = 3.564. Thus, for Moo < Mc the function Q

will not have a local minimum and there is no solution described by (6.3) and (6.4). This

explains why the discontinuous modes do not appear in the computational results for small

Mach numbers. We note that there exists a critical value of the free stream Mach number

when C _ 1 or Prandtl number _ 1 and also for the case of an isothermal flow where the

temperature of the wall is maintained at a constant value.

Thus, from (6.3) _ is a constant to first order for the trapped modes and moreover, the

same constant for each mode. The correction to _ will describe the distinct modes. In order

to determine the eigenfunction in this region it is necessary to determine the correction to

ft. In the trapped layer

_ = aon½(r/- _) , (6.5)

where 7} ,-_ 0(1). Write

/3 = /30 --t- aolrt-1/31 --t- . • •, (6.6)

and substitute (6.5) and (6.6) into (6.1). Equating coefficients of the largest terms, which

are of O(agn2), shows that/3o is indeed defined by (6.3) and (6.4).

Figures 11 and 12 show the solutions of (6.3) and (6.4) for an adiabatic fluid and also for

the case of an isothermal fluid where the temperature of the wall is maintained at a constant

value. In this case for Chapman constant C = 1 and a Prandtl number of unity, the basic

temperature is given by

-T(rl) = 1 + M_(f'(rl)-/'(r/)) 2) + (Tw - 1)(1 - if(r/)), (6.7)
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where Tw is the nondimensional temperature of the wall. Note that if Tw = 1 + (7 - 1)M_/2

then (6.7) reduces to the expression (2.7) for an adiabatic flow.

Figure 11 shows the value of 0 for the trapped modes as a function of Mach number

for an adiabatic wall and an isothermal wall with T_, = 0.5, 1, 2, 4, 8. We see that 0

moves towards the free stream as M_ increases. For large values of M_ the analysis must

be replaced with that described in Section 4 so 0 will correspond to the position of the

temperature adjustment layer given by (4.11) and the modes will be as described in Section

4. This is consistent with (4.11) since we see that the position of the temperature adjustment

layer increases as M_ increases.

Figure 12 shows the corresponding values of/30 for the trapped modes as a function of

Maeh number. We see for the adiabatic case and for the isothermal case with T_, < 8 that the

value of/30 decreases initially as M_o increases but then increases as M_ increases further.

The O(aon) terms in (6.1) give the following equation for V:

d2V Q"(_)
- _o1(_(_))2v = o, (6.8)_v

dr)2 2

where Q"(_/) is defined for/3 =/30. The solution of (6.8) satisfying the boundary conditions

V--*O as 141--*_, (6.9)

is an eigenvalue problem for/31. We find that the solution of (6.8) and (6.9) is

v(v) = d,U(),,-_), (6.1o)

where dl is a constant,

_- = (2Q"(_/)) ¼_), (6.11)

2 } (r(_))2fll

A= (Q"(O)) ½/3o (6.12)

and U(A,7) is the Parabolic cylinder function (see Abramowitz and Stegun 1964). Now

U(A, 7) grows exponentially as _ --+ -oo unless

1 3 5

A= 2' 2' 2' .... (6.13)

Then the behavior of U(A,_-) as _ _ -_z when A is given by (6.13) is

U(A,_) _ (-1)-x-½Fl-_-_e-w'/_,

and

1 --2

U(_,_) ~ _-X-_e-'/4

(6.14)

(6.15)
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as _ ----_ -_-(:x).

From (6.12) and (6.13) we can evaluate fll for a fixed Mach number for a particular

trapped mode. Figure 13 shows the growth rate from (6.6) for M_ = 5 for the first three

trapped modes as a function of a. In order to see the comparison between the numerical

solution of the discontinuous mode described in Section 2, in Figure 13 only the discontinuous

solutions are shown for large a and/3 below a certain value. We see from Figure 13 that for

the first trapped layer mode the asymptotic solution is a very good agreement even for 0(1)

values of a. For successive modes we still have good agreement but for larger values of a.

Below r/ = _, but above _ = rfl where Q(rfl) = 0, QQ]) will be positive. The WKB

solution of (2.16) in the region 77* < 7/ < _ is

[( ]V(r]) = e0(QQ/))-_T(r/)exp aon + al - • Q_dTI1 + :-_o " T2Q-_d_I , (6.16)

where e0 is a constant. Now as 77_ z_

_, , f_ 1 7 2 (6.17), Q_dyl ". . Q_dql - aoln -1---_.

and

/_1 _/--2 _1_ _1 /_--(aon) -½
,,_ T2Q-½d ?I- A (6.18)

_00 • T Q 2d_1 _00._r_.

where A satisfies (6.12). Thus, from (6.16) as r/--_ _/for large

V ,,_ 2_a_n¼(Q"(O))-_T(O)eo]_]-_'-_(2Q") _ exp -_- + aon + a_ - I3 + I4 , (6.19)

where/3 and/4 are integrals defined by

Ia = , Q_drl, (6.20a)

and

_1 / _-(aOn)-½ --2 1- T Q- _ dq. (6.20b)
14 - _00 ,,_*

Then (6.19) matches with (6.10) as _ --* -co if

3_ ¼ 1_ tt- _1_--~ ,t __ [( /31/ ] _A 12.aon*(Q (7])) ,T(r/)(2Q ),e0exp aon -[- al -- _ 13 -]- -[4 : d_(-1) _. (6.21)

Close to the position 7] = 7]* V satisfies (5.16). We do not require V to decay above this

region so the solution for V is

1 . 1 .

V = koTr_Az(r)+ lo_r_ Bz(r), (6.22)
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where k0 and l0 are constants.

From (4.8) the behavior of V as r --+ oc is

V ~ lor-Texp r_ .

The solution (6.16) must match with (6.23) as 7/_ q*. Then l0 is given by

1 i-- ,

lo = eor-*(a2on2T)12T(zl ).

From (6.22) as r ---* -oo

(6.23)

(6.24)

v~(k0 +l ) lrl- cos rl } +-_-02 , (6.25)

where tan 0_ = ko/lo. In the region below r/ = r/* V is given by (5.14), i.e., the solution above

the wall layer for n >> 1. Thus matching the solution (5.14) as 7/ _ q* with (6.25) gives

instead of (5.19)

'--- •12T( )g, = +(ko + (6.26)

and
O.1 71"

(nao -4- al)I1 -- -ff-2--(I1 -4- I2) -- 01 = 02 -- 2_. (6.27)
4za0

7. The Near Crossing of the Wall Layer and Adjustment Layer Modes

We see from the numerical results of Section 2 that for values of the free stream Mach

number above a critical 0(1) value the wall layer modes and the adjustment layer modes

become very close. This occurs for 0(1) values of the wavenumber and continues to occur as

the wavenumber increases.

A similar near crossing occurs for the inflectional acoustic neutral modes and the vorticity

mode associated with the inviscid instability of a Blasius boundary layer for a compressible

fluid and was discussed by Cowley and Hall (1990) and Smith and Brown (1990). The latter

authors confirmed the conjecture of the former that, in the hypersonic limit, the modes are

separated by an exponentially small amount.

To discuss the near crossing of the two different types of mode described in Sections 3

and 4 for Moo >> 1 and in Sections 5 and 6 for a >> 1 we follow Smith and Brown (1990)

and extend our WKB analysis of these previous sections.

Since the near crossing occurs for 0(1) Mach numbers as well as for M_ >> 1 it should

be possible to discuss the near crossing for both situations. The analysis will be similar for

each case and therefore we attempt to minimize any repetition. We will first discuss the

situation for the hypersonic limit.
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7.1. The Hypersonic Limit

We again have that below the turning point V is given by (3.9). In the region of the

turning point V is given by (4.1) and (4.3)- (4.5) still hold. However, we replace (4.8) by

-- gEexp -gt_ +Fexp 5t _ , (7.1)t_

for t >> 1. We also retain the exponentially small term in (,4.9) so that V in the region

between the turning point and the temperature adjustment layer is given by

(1 - ffl ) ,7 1 1

V,._ i--H--y-_4 [coexp{-d_ (-I-t(rll))Tdr}l}q-doexp{--g._y(-H(rll))'idrll}]. (7.2)

We already have (4.10) and matching the exponentially small terms between (7.1) and (7.2)

gives
1

E _ _(1 - f'(rh):), (7.3)
2do o'_

so that
E F

j = (7.4)
We now need to augment (4.16), the behavior as the temperature adjustment layer is ap-

proached from below, by a corresponding term in do so that

1 [ { _ (.y : 1) h{_z_ { _ (,,YM1)hez}]
2h_ e ½= c0exp ga+ + d0exp -g J+ + ,V,-_ 1

Moo('/- 1)7 P ML J r
(7.5)

and then match this with the behavior of V in the temperature adjustment layer as z ---+oo.

If we assume (4.19) has a solution

V = V, (7.6a)

fi = A, (7.6b)

/_ = _, (7.6c)

and then perturb these equations by putting

V =V+ f', (7.7a)

(7.7b)

(7.7c)
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and insert (7.7) into (4.19) we get after linearising

dz2+--d_z $(7_1)he z -1 +f/_2 _(1+(3,_1)he_)2+_7 2

=V
[X2[_2A/I(1 + (7- 1)he*) 2 + tk

which can be integrated to give

with

(7.8)

= Vw(z), (7.9)

w(z) = 2AA [1 + (7V2 V dz2 dzl

)+_ _3 _2 (7-1)hfo +(7_2 foZl[l+(7_l)hez_12dz2 dzl (7.10)

C1 fo x [1 + (7 - 1)hezl] 2+ (3' - 1)h V2 dzl + C2.

Using (4.22) we can calculate the constant C1 that is necessary to ensure that l_ decays

exponentially as z _ -_. We can then use (4.20) to calculate the behavior of w(z) as

z _ o0 and if we choose C2 so that there is no additional contribution of order s½e -a_ to V

from l/then we have that as z ---* o0, V goes as

V _ [(7- 1)he_] ½ [exp{-A(7 - 1)he z} +

where

and

-oo ezy 2 oo

C4=fo [l+(7_l)hezl2dZ-fo

Matching between (7.5) and (7.11) gives us that

(7.11)

(7.12)

eZ-_ 2

[1 + (7- 1)he_] 2dz" (7.13)

+do

-1

exp{-2gJ+ }, (7.14)
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sowe canget F/E from (7.4). Assuming F is small since we want to perturb the wall layer

modes (as well as the adjustment layer modes) for which F is zero, we get

_r F

¢ _ _ - _, (7.:5)

and inserting this into (4.5) gives after some rearranging

(a n_r- _ (a- F [A+ A/)(')' --.])_hC4 1"_
M_ J_ ] (7 - 1 )hC4-B - 2C'3-B 3 J ]

(7.16)
B2F exp{-2a M_ or+}

= 2Ca _2 - (7 - 1)hC4 M_ J_

Setting the two brackets equal to zero gives respectively the wall layer modes and the adjust-

ment layer modes. We can see from (7.16) that for finite Moo these modes do not intersect

but the distance between them is exponentially small. This explains the difficulties we had

in following a particular mode when we solved (2.16) - (2.17) numerically. A sketch is given

in Figure 14 of a pair of these near crossings with the continuous lines representing the situ-

ation at a finite Mach number. The dashed lines represent the picture given by (7.16) with

the exponentially small right-hand side ignored, i.e., when the adjustment layer modes have

become continuous in the limit Moo _ ee.

7.2. Moo ,,_ 0(1)

As discussed in Section 5, in order to describe the near-linking of the wall layer modes

and the trapped layer modes for Moo ,'_ 0(1) we must consider the situation when the mode

number of the wall layer mode is large. Similarly to the case when Moo >> 1 we extend the

WKB analysis of Sections 5 and 6 for n >> 1.

The solution in the wall layer for V is given by (5.12) with the solution below the position

r/ = r/* given by (5.14). The solution close to 77 = r/* is given by (6.22) and so (6.26) and

(6.27) are still satisfied.

Now as r --_ oo, from (6.22) we replace (6.23) by

V,-,r-_ exp -_r_ + 10exp gr_ . (7.17)

In the region rF < 7] < 0 we must retain the exponentially decaying term so instead of (6.16)
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we have

V(q) = (Q(q))-¼T(_) eoexp nao + al - -_o , Q_d_z + _o "T2Q-½d_I

+h0exp - nao + al - -_o , Q_dr/1- flo *

(7.18)

where ho is a constant. Matching this solution as q -* 7/* with (7.17) gives (6.24) as well as

ko ho
- (7.19)21o eo"

Following (6.19), from (7.18) as 7/---, _ for n large

y

2_a]n_(Q"(5))-_T(_) e0[_[-_-½(2Q"(_))_ exp ---_-- + aon +

+ho[_l:'-½(2Q"(_))-¼ exp [_---: - (aon + al - _o) I3 - I4] } .

(7.20)
Now we make the transformation (6.5) and perturb the solution in the trapped layer for

large n where a is given by (5.10). Thus we write

and

3 =/30 + 1----(/31 + 3") +..., (7.21)
aon

V = Vo + V*, (7.22)

where 13" and V* are small perturbations and Vo satisfies (6.8). Then if we substitute (7.21)

and (7.22) into (2.16) and linearize about the perturbed quantities we find that V* satisfies

d2V * Q"( 9) _2v, 2/3, 2_° -- _d02 2 q /30 (T(q))2V*= (T(q))2V°" (7.23)

We wish to determine the behavior of V = V0 + V* as 7) _ -cx). We want V*(7)) to

decay as _ ---+ oc so that the disturbance does not propagate outside the boundary layer.

The solution of (7.23) is

V*O)) = kOO))VoO)), (7.24)

where k0(7)) is given by

2 * 1 _

(V0(_l)) 2" fo (V°(_2))2d_2d_l "+ Da _o_ dO1(Vo(7)1))2 --_ D2. (7.25)
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Usingthe behaviorof V0 as 7) ---, +c¢ given by (6.15) and (6.14) we can determine the values

of the constants D1 and D2. Then from (6.15), since V* must decay for large 7) we find

D1 = -2t3---_*(T(O))2(2Q"((?))-_d_ fo°°(U(.k,_))2d_. (7.26)/30

For _ ---* -oo we choose D_ to cancel the constant terms. Thus, from (6.14) we find that

tp(F) ,_ D3IFI2xexp(_2/2), (7.27)

as F _ --oo where

J0D3 =-(2Q"(_))-_ T(_)) 2 (U(/k,_))2d_(2Q"((7)) -_ + • (7.28)

Thus from (7.26), (7.28) is

4/3* (7.29a)
D3= -_0 (2Q"(_/))-½(T(5))2Ih,

where

I5 = (U()t,-_))2d_.

Thus, from (7.22), (7.24), (7.27), and (6.14), the behavior of V

(7.29b)

as _ _ -oc is given by

v(_) _ d,(-1)-_-½[l_l -_-½ exp(-_2/4) + D31_Ix-½exp(_2/4)]. (7.30)

The WKB solution below the trapped layer must match with (7.30) as _ ---* -c¢. Thus

matching (7.20) and (7.30) gives

_ (2Q"(7)))-_ exp[-2(nao + al -- -_)]3- 214]. (7.31)e_._o

ho D3 Po

Thus, from (7.19) we have lo/ko. The solution for V described above is also a perturbation

of the wall layer solution so we must have from (6.22) that I0 is small. Then we have

_ l0
02 --_ (7.32)

2 ko"

Substituting this in (6.27) gives

al(Ia -- _l----_(Ia + 12)) + naoI1 -- 01
zao

lr lo

4- k-_" (7.33)

Using (7.19) and (7.31) we can rearrange (7.33) to give

01 + 4 - naolx

1 (I1 + Is)al = I1 -

(2Q"(O))-_ exp[--2(nao + a, -- _)I3 -- 214]

2D3(I1- 1_(1, + 1:))
(7.34)
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Now from (5.11)
1

a(_ a 1

1 ! •
fl 2½ 8_a_n

Substituting the expression for al from (7.34) into (7.35) and rearranging gives

/3 a_ 1 01 + 7r/ 4 - naoI1 31
' 1 1 -- 1(i 1 3--/30 -27 71 + h)/J

(7.35)

(7.36)

_ [( 1= 1 exp -2 nao+al- I3-214

8_a_on(T((i))2i_(i1 _ 27o(111 + 12)) 3oo "

If we set the factors on the left-hand side of (7.36) to zero in turn we see that they

describe the growth rates of the wall layer modes and the trapped layer modes respectively.

Thus from (7.36) we see that for large n the wall layer modes and the trapped layer modes

are separated by an exponentially small amount. This explains the apparent crossings of

the growth rate curves obtained from the numerical results of Section 2. Thus the curve of

growth rate as a function of a where the modes are very close is also described by Figure 14

as for the case when M_o >> 1.

8. Discussion

The main result of the present paper is that we are able to investigate the linear growth

rate of GSrtler vortices for 0(1) wavenumbers. This was achieved by considering the inviscid

limit of large GSrtler number for vortices having 0(G½) growth rates. In this limit the

growth of GSrtler vortices is governed by parallel flow effects. Since for incompressible flows,

or compressible flows with 0(1) Mach numbers, the spatial growth of viscous GSrtler vortices

is governed by non-parallel effects previous investigators were forced to consider the limit

of large wavenumber, where as a result of boundary layer growth, non-parallel effects are

unimportant (see Hall 1982a and Hall and Malik 1987). However, Hall and Fu (1989) show

that in the hypersonic limit the growth of GSrtler vortices with wavelength 0((2 log M_)-½)

is governed by a parallel flow theory.

We have shown that in the inviscid limit, in a compressible boundary layer over an infinite

cylinder, there are two types of growth rate modes possible for Ggrtler vortices.

In the hypersonic limit we have firstly the type of mode we call wall layer modes. These

are present in the incompressible case and their growth rates continue to rise as the wavenum-

ber a _ _. Secondly, we have the adjustment layer modes which have their eigenfunctions

concentrated in the temperature adjustment layer away from the wall. The growth rate of

these modes tends to a constant value as a _ ec.
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We have also consideredthe limit a --+ oo for 0(1) Mach numbers to describe the wall

layer modes and the trapped layer modes (equivalent to the temperature adjustment layer

modes when Moo >> 1). The wall layer modes are confined to a thin layer of thickness 0(a -1)

and have growth rates proportional to a} for moderate mode number n and tending to a

constant value for large n. These results are the extension for compressible flows of the

incompressible case described in Section 5 of Denier, Hall, and Seddougui (1991), hereafter

referred to as DHS. For the compressible case we have an additional mode concentrated in

a layer of thickness 0(a-}) away from the wall. This is the so-called "trapped layer mode,"

which has growth rates tending to a constant value as a --+ oc.

The asymptotic results described for Moo >> 1 and also for Moo _ 0(1) are shown to

agree very well with the numerical solutions described in Section 2. We find that as the

Mach number is increased from zero the wall layer modes start_ to deform until at a critical

Mach number we see the appearance of adjustment layer modes.

These modes are not present in an incompressible fluid. However, the growth rate of these

modes tends to a constant value as the wavenumber increases while that of the wall layer

modes (also present in incompressible flows) continues to increase. Hence, we anticipate that

the trapped layer modes will not be as important as the wall layer modes for large values of

the wavenumber.

The situation here is similar to the case of inviscid disturbances to compressible flow over

a flat plate. In this instance the vorticity mode does not appear until M_ exceeds a value

approximately given by 2.2. However, in contrast to the present problem, the vorticity mode

has larger growth rates than the acoustic modes when Moo >> 1.

From the analysis for a >> 1 for Chapman constant C = 1 and unit Prandtl number

for an adiabatic boundary condition on the basic temperature we find that this critical

Mach number is 3.564. For Mach numbers of this range, the adjustment layer modes are

discontinuous with each mode solution of (2.16), apart from the exact solution, contributing

a part to the adjustment layer modes as it passes through the relevant positions.

We showed in Section 7.1 that for Moo >> 1 the wall layer solutions and temperature

adjustment layer solutions of (2.16) come within an exponentially small distance of one

another and in the hypersonic limit the adjustment layer modes become continuous. In

Section 7.2 we showed that this is also the situation in the limit a --+ ec for M_o "-' 0(1) when

the mode number of the wall layer modes is large.

The Chapman viscosity law has been assumed in the present analysis, and results de-

scribed for unit Chapman constant and unit Prandtl number for simplicity. There is no

great difficulty in obtaining results for more realistic values of C and Prandtl number and it

is expected that the effect of this on the asymptotics will be small.
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However, in the hypersonic limit the Chapman viscosity law doesnot give a realistic

description of the viscosity of the fluid. Thus, of interest would be the results when the

more accurate relation Sutherland's law is used to describethe temperature dependence
of the fluid viscosity. The results of Fu, Hall, and Blackaby (1990) who investigated the
GSrtler instability in the hypersoniclimit for Sutherland'slaw showedthat the resultswere

significantly different from those for Chapman's law. In particular the structure of the

temperature adjustment layer is altered, now having 0(1) thickness. Seealso, Blackaby,

Cowley,and Hall (1990)whoinvestigatedhypersonicflowsoveraflat plate usingSutherland's

law. Thus, it is to beexpectedthat significant changesto the resultspresentedin this paper
would exist if Sutherland's viscosity law wasusedin placeof Chapman'slaw.

The solutionsof the equationsgoverningthe instability of G5rtler vorticesin the inviscid
limit do not predict a fastestgrowing mode since the growth ratesof the wall layer modes

tend to infinity when a ---* _. From Section 5, in the high wavenumber limit we see that the

wall layer modes have growth rates of O(G½a½). We can extend the work of DHS to describe

the fastest growing mode in the limit of large G5rtler number for a compressible flow with

M_ -._ 0(1). First we consider the structure of a viscous mode close to the right-hand branch

of the neutral curve with a = A'G¼. This mode exists in a layer of thickness 0(a-½) centered

around some non-zero value of q. Initially A* is 0(1) but we are interested in the limit A* _ 0.

We note that the problem where A* _ c_ corresponds to the work of Hall and Malik (1989).

The analysis is very similar to that described by DHS for the corresponding problem for an

incompressible problem so the details will not be repeated here. As for the inviscid modes

the growth rates are 0(G½). The first approximation to the growth rate/) is determined

from the following condition

2 ^ _flA,2,_ K_y ^ --fi)¢2'_ i,(_2"_y(_+_fi)C2_

\T ]
= 0, (8.1)

and /? is a maximum at y = y_ where (8.1) is satisfied. Here g is the viscosity of the

fluid and F* is the Prandtl number. In the incompressible limit (8.1) reduces to precisely

the expression given by DHS for the corresponding incompressible problem. We consider

solutions of (8.1) when the basic flow is given by the compressible Blasius flow described by

(2.4 - 7) for unit Chapman constant and Prandtl number. Then the situation of )¢ = 0 is

precisely (6.3), determining the growth rate of the trapped layer mode. Thus, for _* = 0

there will not be a solution of (8.1) for values of Moo below a certain value. However, for

)_* > 0 we find that solutions of (8.1) exist for all values of M_. We are not concerned with

the details of the solution of (8.1) here but further particulars may be obtained, on request,

from the second author. We are solely concerned with the behavior of the solution of (8.1)

for )_* --* 0 for the basic flow described in Section 2. The numerical solutions of (8.1) show
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that r/c becomes small for ,k* _ 0 and closer inspection of (8.1) in this limit reveals that

TTc" A.4 and ¢) -,_ A"-2. Thus, in the limit A* _ 0 the growth rates of the viscous modes are
1 1 Thus,as a decreases the viscous right-hand branch modes become more

unstable.

The above discussion suggests that there exists an intermediate region where the viscous

mode described above and the inviscid mode of Section 6 ow_rlap. This will occur when

their growth rates are the same size. We find that this is the case when a ,-_ G-} with the

growth rates of 0(G_). The vortices in this case will be confined to a wall layer of depth of

0(G-_). We note that this situation is identical to that described by DHS for the fastest

growing mode in an incompressible flow. It turns out that the effects of compressibility

may be scaled out with the result that the eigenvalue problem determining the growth rate

of the fastest growing mode is identical to that solved by DttS. Thus we do not present

the system of equations here but point out that full details of the compressible problem

may be obtained from the second author. Consequently, the results of DHS also describe

the solution for a compressible fluid. We have that each unstable mode has its maximum

growth rate occurring at a finite value of ,k*. DHS showed that the most unstable mode

corresponds to A = 0.476, = 0.312 where a = _t _asl_ au'_ and the growth rate of the
%

fastest growing mode is given by G_K_c,_Tg_3. The results described above show that

for a compressible fluid, as well as an incompressible fluid, the most unstable linear G6rtler

vortex at high Ggrtler numbers is viscous with wavenumber of 0(G_), rather than 0(G¼),

which is appropriate to the unstable modes close to the right-hand branch of the neutral

curve. An important result is that the most unstable modes occur close to the wall. This

suggests that significant coupling coefficients will be possible in the receptivity problem for

the most unstable modes. This was shown to be the case for the incompressible problem by

DHS and identical results for a compressible fluid may be inferied simply from the results of

DHS. Of interest would be the behavior of the fastest growing mode in the hypersonic limit.
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Figure 1. Solutions of the eigenvalue problem (2.16) - (2.17) for a Mach number of 2.
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Figure 2. Solutions of the eigenvalue problem (2.16) - (2.17) for a Mach number of 3.25.
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Solutions of the eigenvalue problem (2.16) - (2.17) for a Mach number of 5.
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Figure 4a. Eigenfunction of the fourth mode for a Mach number of 5 and a = 0.2.
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Figure 4b. Eigenfunction of the fourth mode for a Mach number of 5 and a = 1.1.
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Figure 4c. Eigenfunction of the fourth mode for a Mach number of 5 and a = 1.25.
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Figure 4d. Eigenfunction of the fourth mode for a Mach number of 5 and a = 1.35.
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Figure 4e. Eigenfunction of the fourth mode for a Mach number of 5 and a = 2.5.
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Figure 5. Solutions of the eigenvalue problem (2.16) - (2.17) for a Math number of 8.
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Figure 6. The first seven wall layer modes given by (3.17) for a Mach number of 8

(dashed lines) superimposed on Figure 5.
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Figure 7. The first three adjustment layer modes given by (4.19) for a Mach number of 8

(dashed lines) superimposed on Figure 5.
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Figure 8. The growth rate/3 as a function of a for M_ = 5: -- numerical solution of (2.16);

- - - asymptotic solution from (5.4).
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Figure 9. The function Q(r/)/[T(rl)] 2 from (6.2) for a range of values of fl for Mo_ = 5.
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Figure 10. The function Q(q)/[TO?)] 2 from (6.2) for a range of values of _ for M_ = 3.
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Figure 12. The neutral growth rate/30 from (6.3) for the trapped layer modes as a function

of Moo for an adiabatic fluid and also for an isothermal fluid with T_ = 0.5, 1,2,4,8.
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Figure 13. The growth rate/3 as a function of a for Moo = 5: -- numerical solution of (2.16);

- - - asymptotic solution from (6.6).

Figure 14. Sketch of the near crossing of the wall layer and adjustment layer modes. The con-

tinuous curves represent the finite Mach number situation and the dashed lines the situation

in the asymptotic limit Moo --* oo.
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